Domino Tatami Covering is

 NR-completeAlejandro Erickson ${ }^{\dagger}$ and Frank Ruskey

IWOCA 2013, Rouen, France
 Proceedings: paper_91.pdf
 July 10-12, 2013

Japanese Tatami mats

Traditional Japanese floor mats made of soft woven straw.

A 17th Century layout rule: No four mats may meet.

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

(b)

No four dominoes (mats) may meet

Tatami coverings of rectangles were considered by Mitsuyoshi Yoshida, and Don Knuth (about 370 years later).
215. [21] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover rectangular floors in such a way that no four mats meet at any corner. For example, Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida's Jinkōki, a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.
(a)

Coverings of the chessboard

There are exactly two
Generalized by Ruskey, Woodcock, 2009, using Hickerson's decomposition.

Domino Tatami Covering

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares. QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares. QUESTION: Can R be tatami covered with dominoes?
Is this NP-complete?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares. QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares. QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering

(Ruskey, 2009)
INPUT: A region, R, with n grid squares. QUESTION: Can R be tatami covered with dominoes?

Domino Tatami Covering is polynomial

A domino covering is a perfect matching in the underlying graph.

Domino Fatami Covering is polynomial

A domino covering is a perfect matching in the underlying graph.

INPUT: A region, R, with n grid squares.
QUESTION: Can R be covered with dominoes?

Domino Tatami Covering is polynomial

A domino covering is a perfect matching in the underlying graph.

INPUT: A region, R, with n grid squares.
QUESTION: Can R be covered with dominoes?
This can be answered in $O\left(n^{2}\right)$, since the underlying graph is bipartite.

Tatami coverings as matchings

The tatami restriction is the additional constraint, that every 4-cycle contains a matched edge.

Theorem (Churchley, Huang, Zhu, 2011)
Given a graph G, it is NP-complete to decide whether it has a matching such that every 4-cycle contains a matched edge, even if G is planar.

Tatami coverings as matchings

The tatami restriction is the additional constraint, that every 4-cycle contains a matched edge. In Domino Tatami Covering, G is an induced subgraph of the infinite gridgraph, and the matching must be perfect.
Theorem (Churchley, Huang, Zhu, 2011)
Given a graph G, it is NP-complete to decide whether it has a matching such that every 4-cycle contains a matched edge, even if G is planar.

DTC is NP-complete

Domino Tatami Covering
INPUT: A region, R, with n grid squares.
QUESTION: Can R be tatami covered with dominoes?

Theorem (E, Ruskey, 2013)
Domino Tatami Covering is NP-complete.

Planar 3SAT

Let ϕ be a 3CNF formula, with variables U, and clauses C. Let $G=(U \cup C, E)$, where $\{u, c\} \in E$ iff one of the literals u or \bar{u} is in the clause c. The formula is planar if there exists a planar embedding of G.

Planar 3SAT is NP-complete (Lichtenstein, 1982).

Reduction to Planar 3SAT

Working backwards from the answer...

Reduction to Planar 3SAT

Working backwards from the answer...

Reduction to Planar 3SAT

Working backwards from the answer...

Verify the NOT gate

NOT gate covering can be completed with all "good" signals, but no "bad" signal.
"good" "bad"
$\begin{array}{ll}\mathrm{F} \longrightarrow \mathrm{T} & \mathrm{T} \longrightarrow \mathrm{T} \\ \mathrm{T} \longrightarrow \mathrm{F} & \mathrm{F} \longrightarrow \mathrm{F}\end{array}$

Verify the NOT gate

NOT gate covering can be completed with all "good" signals, but no "bad" signal.
"good" "bad"
$\mathrm{F} \longrightarrow \mathrm{T} \quad \mathrm{T} \longrightarrow \mathrm{T}$
$\mathrm{T} \longrightarrow \mathrm{F} \quad \mathrm{F} \longrightarrow \mathrm{F}$

Search for a NOT gate

Search for sub-region, R, of the pink area. If R and the chessboards can be covered with all "good" signals, but no "bad" signal, we are done! "good" "bad"
$\mathrm{F} \longrightarrow \mathrm{T} \quad \mathrm{T} \longrightarrow \mathrm{T}$
$\mathrm{T} \longrightarrow \mathrm{F} \quad \mathrm{F} \longrightarrow \mathrm{F}$

SAT-solvers

- A SAT-solver is software that finds a satisfying assignment to a Boolean formula, or outputs UNSATISFIABLE. We used MiniSAT.
- Given an instance of DTC, the corresponding SAT instance has the edges of the underlying graph G, as variables. A satisfying assignment sets matched edges to TRUE and unmatched edges to FALSE.
- Three conditions must be enforced:

1. TRUE edges are not incident.
2. An edge at each vertex is TRUE.
3. An edge of each 4-cycle is TRUE.

SAT-solvers

We can generate, test cover, and forbid regions with ${ }_{4}$ SAT-solvers.

$$
12
$$

CC\# $\# C C$
CC\# 2

$\begin{aligned} & \text { CC\# \#CC } \\ & \text { CC\# \#CC } \end{aligned}$	$\begin{aligned} & \text { <> <> } \\ & \text {.A. A. } \end{aligned}$	Combine python scripts
2	.V....... V.	with the SAT-solver Min-
.A. <>	<>. <>	
.V....... . A		iSAT (fast, lightweight,
.A.V. .V. <	. ${ }^{\text {. }}$.V. V V.	pre-compiled for my system.)
	.A........A.	
<>........A.	.V........V.	
. A.V.		
.V........A.		
<>. V.		

Gadget Search

- request candidate region, R, from

```
                                    ZumRegions = 0 #count the number of regions we have tried
```

 prevR \(=[1]\)
 while(True
numRegions $+=1$
$s p=$ subprocess.Popen([',/minisat ', satinFilename, satoutFilename], stdout=subpr \mathbb{Z} cess.PIPE)
if $($ nunRegions\%100 $==0)$:
print "number of regions checked", numRegions
if (sp. returncode $=10$): \#satisfied
$g=$ getSATASsignnent(satoutFilenane)
$\mathrm{R}=\mathrm{g}\left[: \mathrm{rkc}^{2}\right]$
$R=g[: r * c]$ the region output fron last minisat of f
1f(prevR $=$ R) MiniSAT, satisfying
((
if(nurkegions\%100 $==0$):
displayRegion(R)
print "good configurations"
for k in range(C):
displayTiling(g,k) "good" signals.

- MiniSAT to test each "bad" signal in R.
- if every test
rClauses $=$ minake clauses to enforce that region
for _clause in R:
\bar{r} Clauses $=$ r(lauses + str $($ _clause $)+10 \backslash n$
badFlag = False
for k in range (badC):
wor each bad configuration, check if it can be completed
In the region R
badContig write((badoatinFilenane, ' W ')
badConfig. close (badCNFstring $[\mathrm{k}]+\mathrm{rClauses})$
sp = subprocess. Popen(['./minisat', badsatinFilename, badsatoutFilename
, stdout=subprocess.PIPE)
5p.wait()
if (5p. returncode $=10$):
badflag = True
if (numRegions\%106== $)$)
print 'bad configuration'
(getSATAssignment (badsatoutFilename) , 0
elif(sp.returncode != 20);
elif(sp.returncode $!=26):$
quiterror('bad minisat returned bad code: ' $+\operatorname{str}(s p . r e t u r n c o d e))$
if (badFlag $==$ False):
ewe have found a good region!
print "HoRRaY", R UNSATISFIABLE R-
sys.exit(0)
\#, \#ve are going to append a forbidden region to satinfilename
$\psi^{\prime}=$ open(satinFilename, $' r+$ ')
\#change the first line with the number of clauses
f. seek(0,0)
f. write ('p cnf ' $+\operatorname{str}($ nGoodVars $)+1$ ' $+\operatorname{str}(\operatorname{len}(g o o d C l a u s e s))+' \backslash n ')$
\#nake a clause from the forbidden region
Clause(map (neg, R))
CNFstring =
for lit in goodClauses [-1]:
CNFstring = CNFstring +
CNFstring $=$ CNFstring $+10 \backslash n+$ str (lit)
- Else, "forbid" R in next iteration.
f. seek(0,2)

NFstring)
elif(sp. returncode != 20):
quitError('good 20)
lse:
sys.stdout.write('There is no region that satisties the input.')
sys.stdout. \uparrow lush()
sys.exit(e)

Huge search space

CC\# \#CC
CC\# \#CC
CC\# \#CC
CC\# . . \#. \#CC
XXX.\#.. XXX
XXX..\#.XXX

CC\#.\#. . XXX
CC\# XXX
CC\# XXX
CC\# XXX

It worked!

Recall the context

Recall the context

Verifiable by hand

Verifiable by hand

Impossible AND gate coverings, where $*$ denotes F or T .

Testing a clause

Simply Connected DTC

Is DTC NP-hard even if the region is simply
connected?

Lozenge 5-Tatami Covering

Lozenge 5-Tatami Covering

Is Lozenge 5-Tatami Covering NP-hard?

Domino +-Tatami Covering

What if we forbid tiles from meeting corner to corner? This was mildly advocated by Don Knuth, but it conflicts somewhat with the broader tatami structure.

Domino +-Tatami Covering

What if we forbid tiles from meeting corner to corner? This was mildly advocated by Don Knuth, but it conflicts somewhat with the broader tatami structure.

Is Domino + -Tatami Covering NP-hard?

Water Strider Problem

Water Strider Problem

Water Strider Problem

INSTANCE: A rectilinear region, R, with n segments, and vertices in \mathbb{R}^{2}.
QUESTION: Is there a configuration of at most k water striders, such that no two water striders intersect, and no more water striders can be added?

Thank you

Thanks also to Bruce Kapron and Don Knuth. Part of this research was conducted at the 9th McGill-INRIA Workshop on Computational Geometry.
Slides at alejandroerickson.com

